3.59 \(\int \frac{\sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=66 \[ \frac{\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac{4 \sin (c+d x)}{3 a^2 d (\cos (c+d x)+1)}-\frac{\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

ArcTanh[Sin[c + d*x]]/(a^2*d) - (4*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - Sin[c + d*x]/(3*d*(a + a*Cos[c
 + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.111554, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {2766, 2978, 12, 3770} \[ \frac{\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac{4 \sin (c+d x)}{3 a^2 d (\cos (c+d x)+1)}-\frac{\sin (c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + a*Cos[c + d*x])^2,x]

[Out]

ArcTanh[Sin[c + d*x]]/(a^2*d) - (4*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])) - Sin[c + d*x]/(3*d*(a + a*Cos[c
 + d*x])^2)

Rule 2766

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+a \cos (c+d x))^2} \, dx &=-\frac{\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{(3 a-a \cos (c+d x)) \sec (c+d x)}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac{4 \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int 3 a^2 \sec (c+d x) \, dx}{3 a^4}\\ &=-\frac{4 \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \sec (c+d x) \, dx}{a^2}\\ &=\frac{\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac{4 \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{\sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [B]  time = 0.288208, size = 152, normalized size = 2.3 \[ -\frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \left (\tan \left (\frac{c}{2}\right ) \cos \left (\frac{1}{2} (c+d x)\right )+\sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right )+6 \cos ^3\left (\frac{1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+8 \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \cos ^2\left (\frac{1}{2} (c+d x)\right )\right )}{3 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + a*Cos[c + d*x])^2,x]

[Out]

(-2*Cos[(c + d*x)/2]*(6*Cos[(c + d*x)/2]^3*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] +
Sin[(c + d*x)/2]]) + Sec[c/2]*Sin[(d*x)/2] + 8*Cos[(c + d*x)/2]^2*Sec[c/2]*Sin[(d*x)/2] + Cos[(c + d*x)/2]*Tan
[c/2]))/(3*a^2*d*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 77, normalized size = 1.2 \begin{align*} -{\frac{1}{6\,{a}^{2}d} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}}-{\frac{3}{2\,{a}^{2}d}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-{\frac{1}{{a}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }+{\frac{1}{{a}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+cos(d*x+c)*a)^2,x)

[Out]

-1/6/d/a^2*tan(1/2*d*x+1/2*c)^3-3/2/d/a^2*tan(1/2*d*x+1/2*c)-1/d/a^2*ln(tan(1/2*d*x+1/2*c)-1)+1/d/a^2*ln(tan(1
/2*d*x+1/2*c)+1)

________________________________________________________________________________________

Maxima [A]  time = 1.09848, size = 132, normalized size = 2. \begin{align*} -\frac{\frac{\frac{9 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac{6 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{2}} + \frac{6 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{2}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*((9*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 6*log(sin(d*x + c)/(cos(
d*x + c) + 1) + 1)/a^2 + 6*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.68033, size = 305, normalized size = 4.62 \begin{align*} \frac{3 \,{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (4 \, \cos \left (d x + c\right ) + 5\right )} \sin \left (d x + c\right )}{6 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

1/6*(3*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*log(sin(d*x + c) + 1) - 3*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*l
og(-sin(d*x + c) + 1) - 2*(4*cos(d*x + c) + 5)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^
2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{\sec{\left (c + d x \right )}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos{\left (c + d x \right )} + 1}\, dx}{a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))**2,x)

[Out]

Integral(sec(c + d*x)/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1), x)/a**2

________________________________________________________________________________________

Giac [A]  time = 1.39514, size = 104, normalized size = 1.58 \begin{align*} \frac{\frac{6 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac{6 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} - \frac{a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 9 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{6}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

1/6*(6*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - 6*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 - (a^4*tan(1/2*d*x +
1/2*c)^3 + 9*a^4*tan(1/2*d*x + 1/2*c))/a^6)/d